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Transcription factor p53 induces cell cycle arrest and apoptosis A o o ol
in response to DNA damagand cellular stressthereby playing oot oy, o oot K o=
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a critical role in protecting cells from malignant transformation. ve He < /
The E3 ubiquitin ligase hDM2 controls p53 levels through a direct Fmoc-R, Fmoc-S,
binding interaction that neutralizes p53 transactivation activity, B
exports nuclear p53, and targets it for degradation via the ubiqui- Compound  Sequence _ Charge o helicty K, (M) ~ Coll _[Cal
. .. . =R *=5 atpH7.4 permeable death
tylation-proteasomal pathway. Loss of p53 activity, either by wr AC-LQRTESOLWKLLPEN-VE, |2 % 4109 o | =
. . . . SAH-p53-1 AC-LSQETFSD*WKLLPE*-NH, 2 25% 1008 no -
deletion, mutation, or hDM2 overexpression, is the most common Mites  rnemsumaow 3w s ne T
defect in human canc&Mumors with preserved expression of wild SALDSS | meisgmimmiionuw | 0 0% 08005 yer | =
I | h | . h h SAH-p53-6 Ac—LSQQTF‘NLWRLL:QN—NH_\ + 14% 56211 yes =
type_p_>53 are rendered vu _nerab e by pharmaco ogic approaches that  EHEEEERN »c-osoorenawmsg N > B - B
stabilize native p53. In this context, hDM2 targeting has emerged T ol oo N o Bl o B

as a validated approach to restore p53 activity and resensitize cancer
cells to apoptosis in vitro and in vivo.

The p53-hDM2 protein interaction is mediated by the 15-residue
o-helical transactivation domain of p53, which inserts into a
hydrophobic cleft on the surface of hDMZ hree residues within
this domain (F19, W23, and L26) are essential for hDM2-bindihg.

We sought to optimize the p53 peptide as a biological tool and
prototype therapeutic by enforcing its-helical structure while
preserving the key interacting residues that enable specific hDM2 D™
engagement. We previously developed a “peptide stapling” strategy &
in which an all-hydrocarbon cross-link is generated within natural
peptides by ruthenium-catalyzed olefin metathesis of insetfed
disubstituted nonproteogenic amino acids bearing olefinic side »
chains (Figure 1A}° We report the application of this strategy to O 10= 0% 10" 1= 1bv A e Ao s e e
the generation of stabilized alpha-helix of p53 (SAH-p53) peptides [nDM2), M thomz], M
that exhibit high affinity for hDM2, and, in contrast to the Figure 1. Synthesis, sequence, and biochemical analysis of SAH-p53

. o . . peptides. (A) Non-natural amino acids were synthesized as described and
correspondmg unmod|f|ed_ pS3 peptide, readily enter ceII.s through cross-linked by ruthenium-catalyzed ring-closing olefin metathesis. (B)
an active uptake mechanism. SAH-p53 treatment reactivated thESAH-pSS compounds were generated by stapling tha4s3equence at
p53 tumor suppressor cascade by inducing the transcription of p53-the indigéll_tted p%sii;i?r?c-t gsigﬁggi:ﬁ:tyérzl?miigggifr(l)gr :{Eﬂitcyé n?e:)lund
respo_nswe genes, providing th_e first examp_le_of a stapled peptlde?grlgiaCilrlc&/I’a?ndichrgism spectra reve}allled enhancement-loélicity fgr .
that kills cancer cells by targeting a transcriptional pathway. SAH-p53 compounds. (D, F) Fluorescence polarization assays using FITC-

To design SAH-p53 compounds, we placed synthetic olefinic peptides and hDMg.1,5 demonstrated subnanomolar hDM2-binding af-
derivatives at positions that avoid critical hDM2-binding residues. finities for select SAH-p53 peptides. Note: UAH-pB3s the “unstapled”
Hydrocarbon staples spanning thé+7 positions were generated o™ ©f SAH-p538.
by olefin metathesis (Figurg 1A). An initial pgqel of fOL.” SAH peptide (Figure 1B,D). SAH-p53-4 also demonstrated improved
p53 _peptldes vv_as synthesaed, each containing a dlstlpctlvely proteolytic stability (Supporting Information, Figure 1).

Iogallzeq cross-link (Figure 1B) To evaluate the structura} impact ~ \ve found that the initial SAH-p53 compounds generated were
of installing an all-hydrocarbohi+7 staple, we conducted circular  ncapable of penetrating intact Jurkat T-cells (Figure 1B, Supporting
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dichroism (CD) experiments to determinehelicity. While the Information, Figure 2). We noted that SAH-p53s-4 were

wild type pS3 peptide displayed 11%-helical content in wate  negatively charged+2) at physiological pH. Positive charge is a
rat pH 7.0, SAH-p53sl—4 demonstrated 1859% a-helicity characteristic feature of certain classes of cell penetrating peptides.
(Figure 1B,C). Fluorescence polarization binding assays using In developing a second generation of compounds, we replaced
hDM2,7.105and FITC-labeled derivatives of SAH-p53s-4 identi- aspartic and glutamic acids with asparagines and glutamines to

fied 4 as a subnanomolar interactor, having an affinity for hDM2 adjust peptide charge and mutated select amino acids previously
almost 3 orders of magnitude greater than that of the wild type reported to participate in p53 nuclear export (L14Q) and ubiqui-
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Trosment  yeh _ WT@OuM) _ SAHESE20,M) SAHDES O 204N achieving clinical benefit from manipulating the p53 pathway. By
Time postTx Eli e %Hi 83 ||: o e %‘ generating a stapled peptide-based hDM2 inhibitor, we have
WB:p53 (I [ e S e [ [ e . . . .
documented an in situ interaction between SAH-g8%8d hDM2
= = e N
ﬁ h;MZ % E’.‘—:—'l‘ i‘%{ (Supporting Information, Figure 4), confirming that its pro-apoptotic
’ — activity derives from restoration of the p53 pathway. The successful

e won o8 | ———— pharmacologic optimization of the transactivatinghelix of p53

ﬁligk’ﬂ"za 2. SAH-p538 ?J?R"ftesn the p53 “ansgripti?]”"’_" g_athw;y. Tr,‘j suggests that this methodology may enable the development of a
overexpressin -1 cells were exposed to the indicate eptides, . T L .

and Western gnalysegs for p53, hDM2, and 521 were perrormedm?&p wide array of peptidic compounds to probe protein interactions and
of treatment. target deregulated transcriptional pathways for therapeutic benefit

in cancer.
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